Multiscale models for vehicular traffic and crowd dynamics.

Benedetto Piccoli Rutgers University - Camden piccoli@camden.rutgers.edu

Abstract

We will start by revising some macroscopic model, based on systems of conservation (or balance) laws, for network flows, such as road networks, supply chains, gas pipelines etc., see [6, 5, 1]. Such models were successfully employed in traffic monitoring projects [9, 2].

Then we will pass to measure solutions to nonlinear transport equations, which naturally allow multi-scale approaches. In particular we can integrate micro and macro scales in a unique representation, see [3]. We show how the Wasserstein metric is the natural one in this context and how to generalize it to deal with source terms [7, 8]. Finally, we show some examples of simulations for crowd dynamics and vehicular traffic [4].

Acknowledgments The author acknowledges the partial support of the NSF Project "KI-Net" Grant DMS # 1107444.

*

References

- A. BRESSAN, S. CANIC, M. GARAVELLO, M. HERTY AND B. PICCOLI, *Flows on networks: recent results and perspectives*, Surveys of the EMS, 1 (2014), to appear.
- [2] E. CRISTIANI, C. DE FABRITIIS AND B. PICCOLI, A fluid dynamic approach for traffic forecast from mobile sensors data, Communications in Applied and Industrial Mathematics, 1 (2010), pp. 54–71.

- [3] E. CRISTIANI, B. PICCOLI AND A. TOSIN, Multiscale Modeling of Pedestrian Dynamics, Springer MS&A: Modeling, Simulation and Applications, Springer-Verlag in print 2014.
- [4] E. CRISTIANI, B. PICCOLI AND A. TOSIN, How Can Macroscopic Models Reveal Self-Organization in Traffic Flow?, Proceedings of 51st IEEE Conference on Decision and Control (CDC 2012), pp. 6989–6994, Maui (Hawaii) 2012.
- [5] C. D'APICE, S. GOETTLICH, M. HERTY AND B. PICCOLI, Modeling, Simulation and Optimiza- tion of Supply Chains. A Continuous Approach, SIAM book series on Mathematical Modeling and Computation, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010.
- [6] M. GARAVELLO AND B. PICCOLI, *Traffic flow on networks*, Applied Math Series vol. 1, American Institute of Mathematical Sciences, Springfield, 2006.
- [7] B. PICCOLI AND F. ROSSI, Transport equation with nonlocal velocity in Wasserstein spaces, Acta Applicandae Mathematicae, 124 (2013), pp. 73– 105.
- [8] B. PICCOLI AND F. ROSSI, Generalized Wasserstein distance and its application to transport equation with source, Archive for Rational Mechanics and Analysis, 211 (2014), pp. 335–358.
- [9] D. WORK, S. BLANDIN, O.-P. TOSSAVAINEN, B. PICCOLI AND A. BAYEN, A traffic model for velocity data assimilation, Applied Mathematics Research Express, 2010 (2010), pp. 1–35.