Continuous and piecewise affine Lyapunov functions using the Yoshizawa construction

Huijuan Li University of Bayreuth, Germany Huijuan.Li@uni-bayreuth.de

joint work with Sigurður Hafstein, and Christopher M. Kellett

Abstract

We present a novel numerical technique for the computation of a Lyapunov function for nonlinear systems with an asymptotically stable equilibrium point. Our proposed approach constructs a continuous piecewise affine (CPA) function given a suitable partition of the state space, called a triangulation, and values at the vertices of the triangulation. The vertex values are obtained from a Lyapunov function in a classical converse Lyapunov theorem and verification that the obtained CPA function is a Lyapunov function is shown to be equivalent to verification of several simple inequalities. Furthermore, by refining the triangulation, we show that it is always possible to construct a CPA Lyapunov function. Numerical examples are presented demonstrating the effectiveness of the proposed method.

Acknowledgments Kellett is supported by ARC Future Fellowship FT1101000746 and by the Alexander von Humboldt Foundation.

Li is supported by the EU Initial Training Network "Sensitivity Analysis for Deterministic Controller Design - SADCO".