Dynamic programming using radial basis functions

Oliver Junge Technische Universität München oj@tum.de

joint work with Alex Schreiber

Abstract

We propose a discretization of the optimality principle in dynamic programming based on radial basis functions and Shepard's approximation method.

Consider a discrete time control system $x_{k+1} = f(x_k, u_k)$ with a continuous map $f : \Omega \times U \to \mathbb{R}^n$ on compact sets $\Omega \subset \mathbb{R}^n$, $U \subset \mathbb{R}^d$, $0 \in U$, as phase and control space, respectively. In addition, we are given a continuous *cost function* $c : \Omega \times U \to [0, \infty)$ and a compact *target set* $T \subset \Omega$ and we assume that c(x, u) is bounded from below by a constant $\delta > 0$ for $x \notin T$ and all $u \in U$. Our goal is to design a *feedback law* $F : S \to U, S \subset \Omega, T \subset S$, that asymptotically stabilizes the system to the target set. To this end we employ the *optimality principle* [1],

(1)
$$V(x) = \inf_{u \in U} \{ c(x, u) + V(f(x, u)) \}, \quad x \in \Omega \setminus T,$$

where $V : \mathbb{R}^n \to [0, \infty]$ is the *(optimal) value function* which fulfills the boundary condition $V|_T = 0$ and, by definition, $V|_{\mathbb{R}^n \setminus \Omega} = \infty$.

Using the Kružkov transform [3] $V \mapsto v(\cdot) = \exp(-V(\cdot))$, (1) transforms to $v(x) = \sup_{u \in U} \left\{ e^{-c(x,u)}v(f(x,u)) \right\}, x \in \Omega \setminus T$, the boundary condition transforms to $v|_T = 1$ and we set $v|_{\mathbb{R}^n \setminus \Omega} = 0$. The right hand side of this fixed point equation yields the Bellman operator

$$\Gamma(v)(x) := \begin{cases} \sup_{u \in U} \left\{ e^{-c(x,u)} \bar{v}(f(x,u)) \right\} & x \in \Omega \backslash T, \\ 1 & x \in T, \\ 0 & x \in \mathbb{R}^n \backslash \Omega \end{cases}$$

on the Banach space $L^{\infty} = L^{\infty}(\mathbb{R}^n, \mathbb{R})$, where $\bar{v}(x) = v(x)$ for $x \in \mathbb{R}^n \setminus T$ and $\bar{v}(x) = 1$ for $x \in T$. By assumption on c, the Bellman operator $\Gamma : L^{\infty} \to L^{\infty}$ is a contraction and thus possesses a unique fixed point.

We are approximating v by an element of the *approximation space* $W = \text{span}(w_1, \ldots, w_n)$, where

$$w_i(x) = \frac{\varphi_i(x)}{\sum_{j=1}^n \varphi_j(x)}, \quad i = 1, \dots, n,$$

for $x \in \Omega$ and $w_i|_{\mathbb{R}^n\setminus\Omega} = 0$ and the $\varphi_i(x) = \varphi(||x - x_i||_2), x \in \Omega$, are radial basis functions on the set $X = \{x_1, \ldots, x_n\} \subset \Omega$ of nodes, cf. [5, 2]. We assume the shape function φ to be nonnegative, so that the w_i are nonnegative, too. For some function $v : \mathbb{R}^n \to \mathbb{R}$, its Shepard approximant $Sv \in W$ is given by, cf. [4], $Sv = \sum_{i=1}^n v(x_i)w_i$.

We now want to approximate the fixed point of Γ . To this end, we define the *Bellman-Shepard operator* to be $\tilde{\Gamma} := S \circ \Gamma : \mathcal{W} \to \mathcal{W}$. We show that the Shepard operator $S : (L^{\infty}, \|\cdot\|_{\infty}) \to (\mathcal{W}, \|\cdot\|_{\infty})$ has norm 1 and that consequently the Bellman-Shepard operator $\tilde{\Gamma} : (\mathcal{W}, \|\cdot\|_{\infty}) \to (\mathcal{W}, \|\cdot\|_{\infty})$ is a contraction and thus the iteration $v^{(k+1)} := S(\Gamma[v^{(k)}])$ converges to the unique fixed point $\tilde{V} \in \mathcal{W}$ of $\tilde{\Gamma}$.

Numerical experiments illustrating the performance of the method will be given.

Acknowledgments. This work was partially supported by the EU under the 7th Framework Programme Marie Curie Initial Training Network FP7-PEOPLE-2010-ITN, SADCO project, GA number 264735-SADCO.

*

References

- [1] R. Bellman. *Dynamic programming*. Princeton University Press, Princeton, N. J., 1957.
- [2] G.E. Fasshauer. *Meshfree Approximation Methods with Matlab*. World Scientific, 2007.
- [3] S. N. Kružkov. Generalized solutions of Hamilton-Jacobi equations of eikonal type. I. *Mat. Sb.* (*N.S.*), 98(140):450–493, 1975.
- [4] D. Shepard. A two-dimensional interpolation function for irregularly-spaced data. In *Proc. 23rd ACM*, pages 517–524. ACM, 1968.
- [5] H. Wendland. Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. *Adv. Comp. Math.*, 4:389–396, 1995.