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Abstract

We propose a discretization of the optimality principle in dynamic programming
based on radial basis functions and Shepard’s approximation method.

Consider a discrete time control system xk+1 = f(xk, uk) with a continuous
map f : Ω × U → Rn on compact sets Ω ⊂ Rn, U ⊂ Rd, 0 ∈ U , as phase and
control space, respectively. In addition, we are given a continuous cost function
c : Ω×U → [0,∞) and a compact target set T ⊂ Ω and we assume that c(x, u) is
bounded from below by a constant δ > 0 for x 6∈ T and all u ∈ U . Our goal is to
design a feedback law F : S → U , S ⊂ Ω, T ⊂ S, that asymptotically stabilizes
the system to the target set. To this end we employ the optimality principle [1],

(1) V (x) = inf
u∈U
{c(x, u) + V (f(x, u))}, x ∈ Ω\T,

where V : Rn → [0,∞] is the (optimal) value function which fulfills the boundary
condition V |T = 0 and, by definition, V |Rn\Ω =∞.

Using the Kružkov transform [3] V 7→ v(·) = exp(−V (·)), (1) transforms
to v(x) = supu∈U

{
e−c(x,u)v(f(x, u))

}
, x ∈ Ω\T , the boundary condition trans-

forms to v|T = 1 and we set v|Rn\Ω = 0. The right hand side of this fixed point
equation yields the Bellman operator

Γ(v)(x) :=

 supu∈U
{
e−c(x,u)v̄(f(x, u))

}
x ∈ Ω\T,

1 x ∈ T,
0 x ∈ Rn\Ω

on the Banach space L∞ = L∞(Rn,R), where v̄(x) = v(x) for x ∈ Rn\T and
v̄(x) = 1 for x ∈ T . By assumption on c, the Bellman operator Γ : L∞ → L∞ is
a contraction and thus possesses a unique fixed point.
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We are approximating v by an element of the approximation space W =
span(w1, . . . , wn), where

wi(x) =
ϕi(x)∑n
j=1 ϕj(x)

, i = 1, . . . , n,

for x ∈ Ω and wi|Rn\Ω = 0 and the ϕi(x) = ϕ(‖x − xi‖2), x ∈ Ω, are radial
basis functions on the set X = {x1, . . . , xn} ⊂ Ω of nodes, cf. [5, 2]. We assume
the shape function ϕ to be nonnegative, so that the wi are nonnegative, too. For
some function v : Rn → R, its Shepard approximant Sv ∈ W is given by, cf. [4],
Sv =

∑n
i=1 v(xi)wi.

We now want to approximate the fixed point of Γ. To this end, we define the
Bellman-Shepard operator to be Γ̃ := S ◦Γ :W →W . We show that the Shepard
operator S : (L∞, ‖ · ‖∞) → (W , ‖ · ‖∞) has norm 1 and that consequently the
Bellman-Shepard operator Γ̃ : (W , ‖·‖∞)→ (W , ‖·‖∞) is a contraction and thus
the iteration v(k+1) := S

(
Γ[v(k)]

)
converges to the unique fixed point Ṽ ∈ W of

Γ̃.
Numerical experiments illustrating the performance of the method will be

given.
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