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Abstract

We study the following state-constrained optimal control problem with mul-
tiple time delays:
Minimize J(u,z) = g(z(T))

over measurable functions u : [0,7] — R™ and arcs = € Wh1([0,T],R")
satisfying

w(t) = f(t,x(t —do),...,x(t —di),u(t —do),...,u(t —dy)) a.e. t € [0,T],
z(t) = xo(t) Vte[—d,0], ¥((T)) =0,
u(t) =up(t) Vite[—dg0), u(t)ecUcCR™ae. tel0,T],

(

t—d)) <0 ae tel0,T],

the data for which comprise an interval [0, 7], constant time delays
0=dy < dy <...<d, (k>1), Lipschitz functions ¢ : R" — R, f :
[0,T] x REFD7 5 REFD ™ s Re 4 - R* — R?7 (0 < ¢ < n), and S :
[0, T] x R*+Dn 5 R defining the state constraint. The initial functions satisfy
xo(+) € L=([0, T],R"™) and wug(-) € L*([0,T], R™).

We assume that the delays commensurate which means that there exists
A > 0 and integers 0 = ny < n; < ... < ny with d; = A -n; for j =
0,1,..., k. The transformation technique proposed by Guinn [3] then permits
the replacement of the delayed optimal control problem by a non-delayed
control problem on the interval [0, A] to which we may apply the Minimum
Principle for non-delayed problems with state constraints; cf. e.g. Maurer
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[4], Vinter [6]. The backward transformation of the adjoint variables and
multipliers furnishes a Minimum Principle for the delayed control problem:;
cf. also Gollmann, Maurer [2].

We briefly sketch numerical discretization and optimization methods which
are similar to those in [2]. The theory and numerical approach are illustrated
by two examples in chemical engineering, resp., in biomedicine that extend
optimal control models in Dadebo, Luus [1], resp., Stengel et al. [5].
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