Necessary conditions in optimal control problems with integral equations of Volterra type

A.V. Dmitruk Russian Academy of Sciences, CEMI vraimax@mail.ru

joint work with N.P. Osmolovskii

Abstract

On a fixed time interval [0, T] consider the control system:

$$x(t) = x(0) + \int_0^t f(t, s, x(s), u(s)) ds$$

where $x \in C^n[0,T]$, $u \in L^r_{\infty}[0,T]$. Among its solutions satisfying endpoint constraints $\eta(p) = 0$, $\varphi(p) \leq 0$ with p = (x(0), x(T)), state and mixed constraints $\Phi(t, x(t)) \leq 0$, $F(t, x, u) \leq 0$, G(t, x, u) = 0, of dimensions $d(\eta), d(\varphi), d(\Phi), d(F), d(G)$, respectively, one should minimize an endpoint cost functional: $J = \varphi_0(p) \to \min$.

The data functions are assumed to be smooth. We assume that the endpoints of the reference state $\hat{x}(t)$ do not lie on the boundary of state constraints, i.e., $\Phi_k(0, \hat{x}(0)) < 0$, $\Phi_k(T, \hat{x}(T)) < 0$, for all $k = 1, \ldots, d(\Phi)$. Moreover, we assume that the mixed constraints are *regular*, i.e. at any point (t, x, u), the gradients with respect to u of all active inequality constraints and all equality constraints are positively-linearly independent.

Theorem 1. Let a process $(\hat{x}(t), \hat{u}(t))$ provide a weak minimum, i.e., a local minimum in the norm $||x||_C + ||u||_{\infty}$. Then $\exists (\alpha_0, \ldots, \alpha_{d(\varphi)}) \ge 0$, $(\beta_1, \ldots, \beta_{d(\eta)})$, measurable bounded functions $h_i(t) \ge 0$, $m_j(t)$, nondecreasing functions $\mu_k(t)$ continuous at 0 and T, and an n-vector function of bounded variation $\psi(t)$ also continuous at 0 and T, not all of them identically vanish, such that the following conditions hold: endpoint complementary slackness: $\alpha_i \varphi_i(\hat{p}) = 0, \quad i = 1, \dots, d(\varphi),$ pointwise complementary slackness: $d\mu_k(t) \Phi_k(t, \hat{x}(t)) = 0$ and $h_i(t) F_i(t, \hat{x}(t), \hat{u}(t)) = 0$ for all k, i; transversality conditions $\psi(0) = l_{x(0)}, \quad \psi(T) = -l_{x(T)},$ where $l(x_0, x_T) = (\sum \alpha_i \varphi_i + \sum \beta_j \eta_j) (x_0, x_T)$ is the endpoint Lagrange function,

stationarity with respect to the control

$$\overline{H}_u(s, \hat{x}(s), \hat{u}(s)) = 0$$

and the adjoint (costate) equation

$$\dot{\psi}(s) = -\overline{H}_x(s, \hat{x}(s), \hat{u}(s)).$$

Here $f_x(t,s) = f_x(t,s,\hat{x}(s),\hat{u}(s)), \quad F_{iu}(s) = F_{iu}(s,\hat{x}(s),\hat{u}(s)), \text{ etc,}$ $\dot{\psi}$ denotes the generalized derivative, we use the convenient modified Pontryagin function

$$H(s, x, u) = \psi(s)f(s, s, x, u) + \int_{s}^{1} \psi(t) f_{t}(t, s, x, u) dt,$$

and the extended modified Pontryagin function $\overline{H}(s, x, u) =$

$$H(s, x, u) - \sum_{i} h_{i}(s) F_{i}(s, x, u) - \sum_{j} m_{j}(s) G_{j}(s, x, u) - \sum_{k} \dot{\mu}_{k}(s) \Phi(s, x).$$

To prove this, we consider our problem as a particular case of an abstract optimization problem in a Banach space with smooth equality constraints and possibly nonsmooth inequality constraints, we use the Lagrange multipliers rule for this problem (which can be obtained by the Dubovitskii–Milyutin approach [2]), and then apply the general optimality conditions to our specific problem. In this last step we use a theorem on the absence of singular components in the Lagrange multipliers at the mixed constraints [1, 2].

*

References

- A.V. DMITRUK, Maximum principle for a general optimal control problem with state and regular mixed constraints, Computation Math. and Modeling, v. 4, no. 4 (1993), p. 364–377.
- [2] A.A. MILYUTIN, A.V. DMITRUK, AND N.P. OSMOLOVSKII, Maximum principle in optimal control, Moscow State University, Faculty of Mechanics and Mathematics, Moscow, 2004 (in Russian), 168 p.